Matrices Hermitian for an Absolute Norm

نویسندگان

  • HANS SCHNEIDER
  • ROBERT E. L. TURNER
چکیده

Let v be a (standardized) absolute norm on en. A matrix H in enn is called normHermitian jf the numerical range V(H) determined by v is real. Let :re be the set of all norm-Hermitians in en"' We determine an equivalence relation'" on {t, .•. , n} with the following property: Let HE en"' Then HE :re if and only if H is Hermitian and h,) = 0 if i + j. Let,l =.# + i:lC. Then.l is a subalgebra of en" and, for A e.1, Jl(A) equals the Euclidean numerical range and hence is convex. Let "f/" be the group of isometries for v, and let tpj = {exp(iH): H e2}. Then d/J is a nonnal subgroup of't" and 't" = dII~, where 9' is a group of permutation matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartesian decomposition of matrices and some norm inequalities

Let ‎X be an ‎‎n-‎‎‎‎‎‎square complex matrix with the ‎Cartesian decomposition ‎‎X = A + i ‎B‎‎‎‎‎, ‎where ‎‎A ‎and ‎‎B ‎are ‎‎‎n ‎‎times n‎ ‎Hermitian ‎matrices. ‎It ‎is ‎known ‎that ‎‎$Vert X Vert_p^2 ‎leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)‎‎‎$, ‎where ‎‎$‎p ‎‎geq 2‎$‎ ‎and ‎‎$‎‎Vert . Vert_p$ ‎is ‎the ‎Schatten ‎‎‎‎p-norm.‎ ‎‎ ‎‎In this paper‎, this inequality and some of its improvements ...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Bounded Groups and Norm - Hermitian Matrices 9

and Hans Schneider· Department of Mathematics University of Wisconsin Madison, Wisconsin 53706 An elementary proof is given that a bounded multiplicative group of complex (real) n X n nonsingular matrices is similar to a unitary (orthogonal) group. Given a norm on a complex n-space, it follows that there exists a nonsingular n X n matrix L (the lAewner-John matrix for the norm) such that LHL -1...

متن کامل

Departure from Normality and Eigenvalue Perturbation Bounds

Perturbation bounds for eigenvalues of diagonalizable matrices are derived that do not depend on any quantities associated with the perturbed matrix; in particular the perturbed matrix can be defective. Furthermore, Gerschgorin-like inclusion regions in the Frobenius are derived, as well as bounds on the departure from normality. 1. Introduction. The results in this paper are based on two eigen...

متن کامل

Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds

We show that three well-known perturbation bounds for matrix eigenvalues imply relative bounds: the Bauer-Fike and Hooman-Wielandt theorems for diagonalisable matrices, and Weyl's theorem for Hermitian matrices. As a consequence, relative perturbation bounds are not necessarily stronger than absolute bounds; and the conditioning of an eigenvalue in the relative sense is the same as in the absol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1973